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13. Cones and semidefinite constraints

� Geometry of cones
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� Example: robust linear program

� Semidefinite constraints

Laurent Lessard (www.laurentlessard.com)

www.laurentlessard.com


What is a cone?

� A set of points C ∈ Rn is called a cone if it satisfies:
I αx ∈ C whenever x ∈ C and α > 0.

I x + y ∈ C whenever x ∈ C and y ∈ C .

� Similar to a subspace, but α > 0 instead of α ∈ R.
(this is a critical difference!)

� Simple examples: |x | ≤ y and y ≥ 0
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What is a cone?

� A slice of a cone is its intersection with a subspace.

� We are interested in convex cones (all slices are convex).

� Can be polyhedral, ellipsoidal, or something else...
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What is a cone?

Polyhedral cone recipe:

1. Begin with your favorite polyhedron Ax ≤ b where x ∈ Rn

2. {Ax ≤ bt, t ≥ 0} is a polyhedral cone in (x , t) ∈ Rn+1

3. The slice t = 1 is the original polyhedron.
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What is a cone?
Ellipsoidal cone recipe:

1. Ellipsoid xTPx + qTx + r ≤ 0 where P � 0 and x ∈ Rn

2. Complete the square ⇐⇒ ‖Ax + b‖ ≤ c

3. {‖Ax + bt‖ ≤ ct} is an ellipsoidal cone in (x , t) ∈ Rn+1

4. The slice t = 1 is the original ellipsoid.
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Second-order cone constraint

A second-order cone constraint is the set of points x ∈ Rn:

‖Ax + b‖ ≤ cTx + d

Every SOC constraint is a slice (set t = 1) of the cone
‖Ax + bt‖ ≤ cTx + dt. It’s not always a cone itself!

Special cases:

� If A = 0, we have a linear inequality (hyperplane)

� If c = 0, it’s a slice of an ellipsoidal cone

Every SOC constraint describes a convex set.
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Second-order cone constraint

A second-order cone constraint is the set of points x ∈ Rn:

‖Ax + b‖ ≤ cTx + d

If you square both sides...

‖Ax + b‖ ≤ cTx + d ⇐⇒

{
‖Ax + b‖2 ≤ (cTx + d)2

cTx + d ≥ 0

The quadratic inequality is:

xT(ATA− ccT)x + 2(bTA− dcT)x + (bTb − d2) ≤ 0

This may be nonconvex!
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Second-order cone constraint

A second-order cone constraint is the set of points x ∈ Rn:

‖Ax + b‖ ≤ cTx + d

Example:

If A =
[
1 0

]
and c =

[
0
1

]
and b = d = 0:

|x | ≤ y

Squaring both sides leads to:

x2 − y 2 ≤ 0 and y ≥ 0
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Special case: rotated second-order cone

A rotated second-order cone is the set x ∈ Rn, y , z ∈ R:

xTx ≤ yz , y ≥ 0, z ≥ 0

With n = 1, this looks like:
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Special case: rotated second-order cone

A rotated second-order cone is the set x ∈ Rn, y , z ∈ R:

xTx ≤ yz , y ≥ 0, z ≥ 0

Can put into standard form:

4xTx ≤ 4yz

4xTx + y 2 + z2 ≤ 4yz + y 2 + z2

4xTx + (y − z)2 ≤ (y + z)2√
4xTx + (y − z)2 ≤ y + z∥∥∥∥[ 2x

y − z

]∥∥∥∥ ≤ y + z
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SOCPs

A second-order cone program (SOCP) has the form:

minimize
x

cTx

subject to: ‖Aix + bi‖ ≤ cTi x + di for i = 1, . . . ,m

� Every LP is an SOCP (just make each Ai = 0)

� Every convex QP and QCQP is an SOCP

I convert quadratic cost to epigraph form (add a variable)

I convert quadratic constraints to SOCP (complete square)
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Implementation details

A second-order cone program (SOCP) has the form:

minimize
x

cTx

subject to: ‖Aix + bi‖ ≤ cTi x + di for i = 1, . . . ,m

� In JuMP, you can specify SOCP using:
@constraint(m, norm(A*x+b) <= dot(c,x)+d)

works with ECOS, SCS, Mosek, Gurobi, Ipopt.

� Can also specify rotated cones directly in Mosek, Ipopt.
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Example: robust LP

Consider a linear program with each linear constraint
separately written out:

maximize
x

cTx

subject to: aTi x ≤ bi for i = 1, . . . ,m

Suppose there is uncertainty in some of the ai vectors. Say
for example that ai = āi + ρu where āi is a nominal value and
u is the uncertainty.

� box constraint: ‖u‖∞ ≤ 1

� ball constraints: ‖u‖2 ≤ 1
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Robust LP with box constraint

Substituting ai = āi + ρu into aTi x ≤ bi , obtain:

āTi x + ρuTx ≤ bi for all uncertain u

box constraint:

If this must hold for all u with ‖u‖∞ ≤ 1, then it holds for the
worst-case u. Therefore:

uTx =
n∑

i=1

uixi ≤
n∑

i=1

|ui ||xi | ≤
n∑

i=1

|xi | = ‖x‖1

Then we have
āTi x + ρ‖x‖1 ≤ bi
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Robust LP with box constraint

With a box constraint ai = āi + ρu with ‖u‖∞ ≤ 1

maximize
x

cTx

subject to: aTi x ≤ bi for i = 1, . . . ,m

Is equivalent to the optimization problem

maximize
x

cTx

subject to: āTi x + ρ‖x‖1 ≤ bi for i = 1, . . . ,m
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Robust LP with box constraint
With a box constraint ai = āi + ρu with ‖u‖∞ ≤ 1

maximize
x

cTx

subject to: aTi x ≤ bi for i = 1, . . . ,m

... which is equivalent to the linear program:

maximize
x ,t

cTx

subject to: āTi x + ρ
n∑

j=1

tj ≤ bi for i = 1, . . . ,m

− tj ≤ xj ≤ tj for j = 1, . . . , n
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Robust LP with box constraint
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� New region is smaller, still a polyhedron

� More robust to uncertain constraints
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Robust LP with ball constraint

Substituting ai = āi + ρu into aTi x ≤ bi , obtain:

āTi x + ρuTx ≤ bi for all uncertain u

ball constraint:

If this must hold for all u with ‖u‖2 ≤ 1, then it holds for the
worst-case u. Using Cauchy-Schwarz inequality:

uTx ≤ ‖u‖2‖x‖2 ≤ ‖x‖2

Then we have
āTi x + ρ‖x‖2 ≤ bi

(a second-order cone constraint!)
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Robust LP with ball constraint

With a ball constraint ai = āi + ρu with ‖u‖2 ≤ 1

maximize
x

cTx

subject to: aTi x ≤ bi for i = 1, . . . ,m

Is equivalent to the optimization problem

maximize
x

cTx

subject to: āTi x + ρ‖x‖2 ≤ bi for i = 1, . . . ,m

which is an SOCP
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Robust LP with ball constraint
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� New region is smaller, no longer a polyhedron

� More robust to uncertain constraints
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Matrix variables
Sometimes, the decision variable is a matrix X .

� Can always just think of X ∈ Rm×n as x ∈ Rmn.

� Linear functions:

mn∑
k=1

ckxk = cTx

m∑
i=1

n∑
j=1

CijXij = trace(CTX )

� Linear program:

maximize
X

trace(CTX )

subject to: trace(AT
i X ) ≤ bi for i = 1, . . . , k
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Matrix variables

If a decision variable is a symmetric matrix X = XT ∈ Rn×n,
we can represent it as a vector x ∈ Rn(n+1)/2.

x1 x2 x3
x2 x4 x5
x3 x5 x6

 ⇐⇒


x1
x2
x3
x4
x5
x6


The constraint X � 0 is called a semidefinite constraint.
What does it look like geometrically?
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The PSD cone

The set of matrices X � 0 are a convex cone in Rn(n+1)/2

Example: The set

[
x y
y z

]
� 0 of points in R3 satisfy:

xz ≥ y 2, x ≥ 0, z ≥ 0

This is a rotated second-order cone! Equivalent to:∥∥∥∥[ 2y
x − z

]∥∥∥∥ ≤ x + z
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More complicated example

The set of (x , y , z) satisfying

[
1 x y
x 1 z
y z 1

]
� 0 is the solution of:

{
X ∈ R3×3, X � 0, X11 = 1, X22 = 1, X33 = 1

}
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Spectrahedra

� Two common set representations:

I variables x1, . . . , xk , constants Qi = QT
i , and constraint:

Q0 + x1Q1 + . . . xkQk � 0 (linear matrix inequality)

I variable X � 0 and the constraints:

trace(AT
i X ) ≤ bi (linear constraint form)

� These sets are called spectrahedra.

� Very rich set, lots of possible shapes.
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Semidefinite program (SDP)

Standard form #1: (looks like the standard form for an LP)

maximize
X

trace(CTX )

subject to: trace(AT
i X ) ≤ bi for i = 1, . . . ,m

X � 0

Standard form #2:

maximize
x

cTx

subject to: Q0 +
m∑
i=1

xiQi � 0
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Relationship with other programs

Every LP is an SDP:[
a11 a12
a21 a22

] [
x1
x2

]
≤
[
b1
b2

]
is the same as:

x1

[
a11 0
0 a21

]
+ x2

[
a12 0
0 a22

]
�
[
b1 0
0 b2

]
(polyhedra are special cases of spectrahedra)
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Relationship with other programs

Every SOCP is an SDP:

‖Ax + b‖ ≤ cTx + d

is the same as: [
(cTx + d)I Ax + b
(Ax + b)T cTx + d

]
� 0

This isn’t obvious — proof requires use of Schur complement.
(second-order cones are special cases of spectrahedra)
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